SVM-based Semantic Clustering and Retrieval of A 3D Model Database

نویسندگان

  • Suyu Hou
  • Kuiyang Lou
چکیده

In this paper, we present a semi-supervised semantic clustering method based on Support Vector Machines (SVM) to organize the 3D models semantically. Ground truth data is used to identify the pattern of each semantic category by supervised learning. Unknown data is then automatically classified and clustered based on the resulting pattern. We also propose a unified search strategy which applies semantic constraints to the retrieval by using the resulting clusters. A query is first labeled with its semantic concept so that shape-based search is only conducted in the corresponding cluster. Experiments are performed to evaluate the effects of semantic clustering and retrieval respectively by using our prototypical 3D Engineering Shape Search System (3DESS).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information

With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...

متن کامل

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

3D Models Recognition in Fourier Domain Using Compression of the Spherical Mesh up to the Models Surface

Representing 3D models in diverse fields have automatically paved the way of storing, indexing, classifying, and retrieving 3D objects. Classification and retrieval of 3D models demand that the 3D models represent in a way to capture the local and global shape specifications of the object. This requires establishing a 3D descriptor or signature that summarizes the pivotal shape properties of th...

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

3D Model Retrieval Based on Semantic and Shape Indexes

Classifying 3D models into classes is an important step in 3D model retrieval process. However, most classification system does not include semantic information. In this paper, a new method has been proposed to classify and to retrieve 3D model using semantic concepts and ontology. First, we use the machine learning methods to label 3D models by k-means algorithm in shape indexes space. Second,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004